細胞培養基質 層粘連蛋白511
iMatrix-511
◆什么是層粘連蛋白511?
層粘連蛋白是存在于動物基底膜的一種細胞外基質,已知其與細胞粘附和增殖息息相關。本產品是與層粘連蛋白 511-E8 片段有同一序列的重組蛋白,是可以促進各種細胞粘附和伸展的培養基質。
大阪大學和京都大學共同研究開發,本產品已證明在操作難度非常大的人 iPS 細胞和人 ES 細胞培養中,也可以安全且高效地進行細胞培養。
● 細胞培養的準備非常簡單!
● 可用于多種類型的細胞培養!
● 無論分離細胞的狀態如何,可實現細胞的高生存率和細胞增殖的高效性!
● 重組蛋白(CHO-S細胞來源),所以混入雜質的危險性低!
● 溶液型試劑,無需溶解,稀釋后可直接使用
層粘連蛋白511 是由 α5 鏈、β1 鏈和 γ1 鏈組成的層粘連蛋白。層粘連蛋白 511-E8 是層粘連蛋白片段,但其具有與層粘連蛋白全長分子相同的 α6β1 整合蛋白連接功能。
本產品是 Nippi 根據大阪大學和京都大學的專利技術生產販賣的。
◆使用方法
用 PBS(-)稀釋本產品,按照 0.1~0.5 μg/cm2 加入細胞培養器皿中。
※由于細胞種類和細胞株的不同、使用的培養基種類不同,添加的最適劑量會有差異,初次使用時,按照 0.5 μg/cm2 添加培養容器中,逐漸
※調整至最佳使用濃度。
↓
室溫下孵育 3 小時,然后去掉溶液。
↓
添加細胞和培養液,進行細胞培養。
● 培養 ES/iPS 細胞時,可進行無飼養層和單細胞繼代培養
◆使用案例
使用本產品對表皮細胞培養 0.5 小時,對血管內皮細胞培養 1 小時。
(a) 表皮細胞,培養 0.5 小時
左(無涂層):大部分細胞未貼壁。
右(iMatrix):多數細胞貼壁并成伸展狀態。
(b) 血管內皮細胞,培養 1 小時
左(無涂層):有貼壁的細胞,但大部分多為圓形。
右(iMatrix):較少觀察到圓形細胞,幾乎所有的細胞表現出了很好的伸展性。
實驗人員: (株) Nippi BioMatrix 研究所 藤崎
◆iMatrix-511 與 iMatrix-511 silk 的區別
iMatrix-511 | iMatrix-511 silk | |
生產系統 | 轉基因 CHO-S 細胞 | 轉基因蠶生產系統 |
提純材料 | CHO-S 細胞培養上清 | 蠶蛹蛋白 |
產品等級 | 實驗研究用* *有臨床用級別 | 實驗研究用 |
導入基因 | 人層粘連蛋白 511-E8 片段 | |
純度 | 95% 以上 | |
濃度 | 0.5 mg/mL | |
解離常數 | 10 nM 以下 | |
使用期限 | 生產后 2 年內 | |
iPS 細胞培養能力 | 添加 0.5 μg/cm2 到培養容器中,可用于 iPS 細胞的維持培養 |
◆產品列表
產品編號 | 生產商編號 | 產品名稱 | 包裝 |
892011 | iMatrix-511 solution (0.5 mg/mL) 層粘連蛋白511-E8片段, 溶液(0.5 mg/mL) | 175 μg×2(350 μL×2) | |
892012 | 175 μg×6(350 μL×6) |
※ 本頁面產品僅供研究用,研究以外不可使用。
點擊此處,選擇頁面中的”iMatrix? Calculator“計算實驗中 iMatrix-511 使用量
點擊此處進一步獲取文獻應用實例
點擊此處下載產品宣傳頁
iMatrix-511,iMatrix-511 silk
Q1. 產品是以什么樣的狀態銷售的?
A1. 產品是以液態銷售的。一支試管里密封裝有 0.5 mg/mL 濃度的 175 μg 的細胞培養外基質(層粘連蛋白 511-E8 片段)。
※iMatrix-511 的凍干產品已于2015年3月停止生產。
Q2. 產品的存儲條件和有效期是什么?
A2. 產品的儲存條件為,冷藏保存在 2-15°C。(推薦 4°C)
A2. 產品的有效期,請參考下表。
產品 | 保質期 |
iMatrix-511 | 自生產后兩年內 |
iMatrix-511silk | 自生產后兩年內 |
iMatrix-511MG | 自生產后兩年內 |
※具體的有效期詳見產品外包裝。
Q3. 可以冷凍保存嗎?
A3. 不可以冷凍保存。
Q4. 產品的純度是多少?
A4. 純度為 95% 以上。
Q5. 培養 hES/hiPS 細胞時使用什么培養基最好?
A5. 宮崎等的論文(Nature communications, 3(1236), 1-10, 2012)、(Scientific Reports, 7, 41165, 2017)中,使用了以下的培養基。
?mTeSR1,TeSR2,TeSR-E8 (STEMCELL Technologies)
?Stem Pro hESC SFM (Thermo Fisher Scientific)
?StemFit AK03 (Ajinomoto)
中川等的論文(Scientific Reports, 4(3594), 1-7, 2014)中使用了以下的培養基。
?StemFit (Ajinomoto)
文獻中使用的培養基都出現了良好的結果。
Q6. 培養 iPS 細胞時,最佳的涂層濃度是多少?
A6. 最佳的涂層濃度根據細胞株的不同也會有所不同。
A6. 最初請從濃度 0.5 μg/cm2 開始嘗試,請根據您使用的細胞株在濃度 0.1~1.5 μg/ cm2 之間考慮。
A6. 另外,還有文獻報道了新的不以涂層包被的添加法。
A6. Miyazaki et al. Scientific Reports, 7, 41165, (2017)
Q7. 請教我使用 iMatrix-511 時,培養 iPS 細胞的步驟。
A7. 使用 iMatrix-511 時,ES/iPS 細胞的擴增培養步驟,傳代操作,請參考以下的鏈接。
Q8. 培養 iPS 細胞時,需要 Rock Inhibitor(Y-27632)嗎?
A8. 在中川等的論文(Scientific Reports, 4(3594), 2014)中,介紹了只有在傳代時添加 Rock Inhibitor,更換培養基的時候不需使用。
Q9. 培養 iPS 細胞時可以單細胞傳代嗎?
A9. 可以。
※使用 iMatrix-511 時,ES/iPS 細胞的擴增培養步驟,傳代操作,請參考以下的鏈接。
也可以參考中川等的論文(Scientific Reports, 4(3594), 2014)。
Q10. 傳代時使用什么細胞分離液?
A10. 可使用胰蛋白酶。
※使用 iMatrix-511 時,ES/iPS 細胞的擴增培養步驟,傳代操作,請參考以下的鏈接。
也可以參考中川等的論文(Scientific Reports, 4(3594), 2014)。
Q11. 可以使用小鼠的 iPS 細胞嗎?
A11. 由于沒有小鼠 iPS 細胞的培養數據,所以無法回答。
Q12. 這個產品與基質膠有什么不同?
A12. 基質膠含有小鼠EHS肉瘤來源的層粘連蛋白-111。另外還含有層粘連蛋白以外的分子。
A12. iMatrix-511 是將在 CHO-S 細胞中表達的層粘連蛋白 511-E8 片段高度純化后的重組蛋白。
A12.iMatrix-511silk 是從蠶結的繭中高純度純化層粘連蛋白 511-E8 片段的重組蛋白。
A12.已知人ES細胞和 iPS 細胞是通過細胞膜受體(特別是 α6β1整聯蛋白)粘附于層粘連蛋白-511。
A12.已知人ES細胞和 iPS 細胞對層粘連蛋白-511 具有高粘附活性。這使得用 iMatrix-511/iMatrix-511silk 可以使 iPS 細胞在單細胞狀態下傳代。
A12.在宮崎等的論文中(Nature communications, 3(1236), 1-10, 201),5 次傳代后(30 天后)的細胞數擴增效率約為基質膠的 200 倍。
參考文獻
分類 | 文獻信息 | 主題 |
人多能干細胞(hPSC)的確立 | Miyazaki et al. Nat. Commun.3:1236, (2012) | 證實用作hPSC的培養基質的有效性 |
Nakagawa et al. Sci. Rep. 4:3594, (2014) | 確立醫療等級的hPSC | |
Takashima et al. Cell.158(6):1254-69, (2014) | 促進向hPSC的基質狀態的轉移 | |
Miyazaki et al. Sci. Rep.7:41165, (2017) | 采用無需涂層操作的添加法培養hPSC | |
Sekine et al. Stem Cell Res.24:40-43, (2017) | 確立疾病特異性的hPSC | |
Tan et al. Stem Cell Res. 24:12-15, (2017) | ||
Ishida et al. Sci. Rep. 8(1), 310, (2018) | 利用hPSC的基因編輯建立遺傳性疾病模型 | |
Kim et al. Nature Communications, 9(1), 939, (2018) | ||
Sakai-Takemura et al. Sci. Rep, 8, 6555, (2018) | 懸浮培養由hPSC分化的肌肉前體細胞 | |
由hPSC分化衍生的細胞 | Doi et al. Stem Cell Reports. 2(3):337-50, (2014) | 多巴胺產生神經元 |
Ishikawa et al. Hum. Mol. Genet.25(23): 5188-5197, (2016) | ||
Nishimura et al. Stem Cell Reports.6(4): 511-524, (2016) | ||
Samata et al. Nat. Commun. 7:13097, (2016) | ||
Kikuchi et al. Nature. 548(7669):592-596, (2017) | ||
Morizane et al. Nat. Commun.8(1):385, (2017) | ||
Kikuchi et al. J. Neurosci. Res.95(9):1829-37, (2017) | ||
Goparaju et al. Sci. Rep. 7:42367, (2017) | 運動神經元 | |
Burridge et al. Nat. Methods.11(8):855-60, (2014) | 心肌細胞 | |
Sougawa et al. Sci. Rep,8(1), 3726, (2018) | ||
Yamauchi et al. BBRC, 495(1), 1278-1284, (2018) | 心室肌細胞 | |
Akiyama et al. Sci. Rep, 8(1), 1189, (2018) | 骨骼肌細胞 | |
Saito et al. Stem Cell Res Ther, 9(1), 12, (2018) | 成骨細胞 | |
Uchimura et al. Stem cell research, 25, 98-106, (2017) | 成肌細胞 | |
Hayashi et al. Nature.531(7594):376-80, (2016) | 視覺細胞 | |
Hayashi et al. Nat. Protoc.12(4):683-696, (2017) | 角膜上皮細胞 | |
Takayama et al. BBRC. 474(1):91-96, (2016) | 膽管上皮細胞 | |
Takayama et al. Hepatol Commun,1(10), 1058-1069, (2017) | 肝實質細胞 | |
Takayama et al. Biomaterials, (2018) | ||
Takebe et al. Cell Reports, 21(10), 2661-2670, (2017) | 肝細胞 | |
Tan et al. Stem Cell Reports, 11:1-11, (2018) | ||
Camp et al. Nature. 546(7659):533-38, (2017) | 定形內胚層細胞 | |
Zhang et al. Stem Cell Reports, 10(2), 1–14, (2018) | 后內胚層前體細胞 | |
Tanigawa et al. Cell reports, 15(4), 801-813, (2016) | 腎單位前體細胞(胎腎細胞) | |
Musah et al. Nat.Biomed.Eng.1:0069, (2017) | 腎小球上皮細胞 | |
Musah et al. Nature protocols,13(7):1662, (2018) | ||
Mae et al. BBRC, 495(1), 954-961, (2018) | 輸尿管芽組織 | |
Oshima et al. BBRC, 497(2), 719-725, (2018) | 血細胞?血管內皮常見前體細胞 | |
Taguchi et al. Cell Stem Cell, 21, (2017) | *培養hPSC用于分化腎單位前體細胞(胎腎細胞) | |
Kawamura et al. Stem Cell Reports.6(3):312-20,(2016) | *培養hPSC用于分化心肌細胞 | |
Sasaki et al. Cell Stem Cell.17(2):178-94, (2015) | *培養hPSC用于分化生殖細胞 | |
Kojima et al. Cell Stem Cell.21(4):517-532, (2017) | ||
Furuta et al. PLoS One. 9(12):e112291, (2014) | *培養hPSC用于分化間充質細胞 | |
人原代細胞的培養 | Okumura et al. Invest. Ophth. Vis. Sci.56(5):2933-42, (2015) | 人角膜內皮細胞 |
Hongo et al. Invest. Ophth. Vis. Sci.58(9):3325-34, (2017) | ||
Polisetti et al. Sci. Rep.7(1):5152, (2017) | 人角膜邊緣上皮前體細胞 | |
Ishii et al. Stem Cell Reports, 10, 1-15, (2018) | 衛星細胞 | |
層粘連蛋白-整合素相互作用的分子機制 | Ido et al. J. Biol. Chem. 282(15): 11144-54, (2007) | |
Ido et al. J. Biol. Chem.283(42): 28149-57, (2008) | ||
Taniguchi et al. J. Biol. Chem. 284(12): 7820-31, (2009) | ||
Taniguchi et al. BBRC.487(3): 525-531, (2017) | ||
Takizawa et al. Sci Adv.3(9) :e1701497, (2017) |
英文論文
[1] | Ayabe, H., Anada, T., Kamoya, T., Sato, T., Kimura, M., Yoshizawa, E., Kikuchi, Shunyuu., Ueno, Yasuharu., Sekine, keisuke., J. Gray Camp., Treutlein, B., Ferguson, Autumn., Suzuki, Osamu., Takede, Takanori.. Optimal Hypoxia Regulates Human iPSC-Derived Liver Bud Differentiation through Intercellular TGFB Signaling. Stem Cell Reports, 11, 1-11, (2018)
|
[2] | Musah, S., Dimitrakakis, N., Camacho, D. M., Church, G. M., Ingber, D. E.. Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a lomerulus Chip. Nature protocols, 13(7), 1662, (2018)
|
[3] | Ishii, K., Sakurai, H., Suzuki, N., Mabuchi, Y., Sekiya, I., Sekiguchi, K., Akazawa, C.. Recapitulation of Extracellular LAMININ Environment Maintains Stemness of Satellite Cells In Vitro. Stem Cell Reports, 10, 1-15, (2018)
|
[4] | Ishida, K., Xu, H., Sasakawa, N., Lung, M. S. Y., Kudryashev, J. A., Gee, P., & Hotta, A.. Site-specific randomization of the endogenous genome by a regulatable CRISPR-Cas9 piggyBac system in human cells. Scientific Reports, 8(1), 310, (2018)
|
[5] | Takayama, K., Hagihara, Y., Toba, Y., Sekiguchi, K., Sakurai, F., Mizuguchi, H.. Enrichment of high- functioning human iPS cell-derived hepatocyte-like cells for pharmaceutical research. Biomaterials, (2018)
|
[6] | Akiyama, T., Sato, S., Chikazawa-Nohtomi, N., Soma, A., Kimura, H., Wakabayashi, S., Ko, S.B., Ko, M. S.. Efficient differentiation of human pluripotent stem cells into skeletal muscle cells by combining RNA-based MYOD1-expression and POU5F1-silencing. Scientific Reports, 8(1), 1189, (2018)
|
[7] | Saito, A., Ooki, A., Nakamura, T., Onodera, S., Hayashi, K., Hasegawa, D., Okudaira,T., Watanabe, K., Kato, H., Onda, T., Watanabe, A., Kosaki, K., Nishimura, K., Ohtaka, Manami., Nakanishi, M., Sakamoto, T., Yamaguchi, A., Sueishi, K., Azuma, T.. Targeted reversion of induced pluripotent stem cells from patients with human cleidocranial dysplasia improves bone regeneration in a rat calvarial bone defect model. Stem Cell Research & Therapy, 9(1), 12, (2018)
|
[8] | Yamauchi, K., Li, J., Morikawa, K., Liu, L., Shirayoshi, Y., Nakatsuji, N., Elliott, A. D., Hisatome, I., Suemori, H..Isolation and characterization of ventricular-like cells derived from NKX2-5 eGFP/w and MLC2v mCherry/w double knock-in human pluripotent stem cells. Biochemical and Biophysical Research Communications, 495(1), 1278-1284, (2018)
|
[9] | Mae, S., Ryosaka, M., Toyoda, T., Matsuse, K., Oshima, Y., Tsujimoto, H., Okumura, S., Shibasaki, A., Osafune, K.. Generation of branching ureteric bud tissues from human pluripotent stem cells. Biochemical and biophysical research communications, 495(1), 954-961, (2018)
|
[10] | Kagihiro, M., Fukumori, K., Aoki, T., Ungkulpasvich, U., Mizutani, M., Viravaidya-Pasuwat, K.,& Kino-oka, M.. Kinetic analysis of cell decay during the filling process: Application to lot size determination in manufacturing systems for human induced pluripotent and mesenchymal stem cells. Biochemical Engineering Journal, 131, 31-38, (2018)
|
[11] | Zhang, R. R., Koido, M., Tadokoro, T., Ouchi, R., Matsuno, T., Ueno, Y., Sekine, K., Takebe, T., Taniguchi, H.. Human iPSC-Derived Posterior Gut Progenitors Are Expandable and Capable of Forming Gut and Liver Organoids. Stem Cell Reports, 10(2), 1?14, (2018)
|
[12] | Oshima, K., Saiki, N., Tanaka, M., Imamura, H., Niwa, A., Tanimura, A., Nagahashi, A., Hirayama, A., Okitac, K., Hotta, A., Kitayama, S., Osawa, M., Kaneko, S., Watanabe, A., Asaka, I., Fujibuchi, W., Imai, K., Yabe, H., Kamachi, Y., Hara, J., Kojima, S., Tomita, M., Soga, T., Noma, T., Nonoyama, S., Nakahata, T., Saito, MK.. Human AK2 links intracellular bioenergetic redistribution to the fate of hematopoietic progenitors. Biochemical and Biophysical Research Communications, 497(2), 719- 725, (2018)
|
[13] | Sougawa, N., Miyagawa, S., Fukushima, S., Kawamura, A., Yokoyama, J., Ito, E., Harada, A., Okimoto, K., Mochisuki-Oda, N., Saito, A., Sawa, Y.. Immunologic targeting of CD30 eliminates tumourigenic human pluripotent stem cells, allowing safer clinical application of hiPSC-based cell therapy. Scientific Reports, 8(1), 3726, (2018)
|
[14] | Yasuda, S. Y., Ikeda, T., Shahsavarani, H., Yoshida, N., Nayer, B., Hino, M., Vartak-Sharma, N., Suemori, H., Hasegawa, K.. Chemically defined and growth-factor-free culture system for the expansion and derivation of human pluripotent stem cells. Nature Biomedical Engineering, 2(3), 173, (2018)
|
[15] | Kim, S. I., Matsumoto, T., Kagawa, H., Nakamura, M., Hirohata, R., Ueno, A., Ohishi, M., Sakuma, T., Soga, T., Yamamoto, T., Woltjen, K.. Microhomology-assisted scarless genome editing in human iPSCs. Nature Communications, 9(1), 939, (2018)
|
[16] | Hayashi, R., Ishikawa, Y., Katori, R., Sasamoto, Y., Taniwaki, Y., Takayanagi, Tsujikawa, M., Sekiguchi, K., Quantock, A. J., Nishida, K. . Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nature Protocols, 12(4), 683-696, (2017)
|
[17] | Kikuchi, T., Morizane, A., Okita, K., Nakagawa, M., Yamakado, H., Inoue, H., Takahashi, R., Takahashi, J. . Idiopathic Parkinson's disease patient‐derived induced pluripotent stem cells function as midbrain dopaminergic neurons in rodent brains. Journal of Neuroscience Research, 95(9),1829-37, (2017)
|
[18] | Miyazaki, T., Isobe, T., Nakatsuji, N., & Suemori, H. . Efficient Adhesion Culture of Human Pluripotent Stem Cells Using Laminin Fragments in an Uncoated Manner. Scientific Reports, 7 (41165), 1-8, (2017)
|
[19] | Goparaju, S. K., Kohda, K., Ibata, K., Soma, A., Nakatake, Y., Akiyama, T., Wakabayashi, S., Matsushita, M., Sakota, M., Kimura, H., Yuzaki, M., Shigeru B. H. Ko & Minoru S. H. Ko. . Rapid differentiation of human pluripotent stem cells into functional neurons by mRNAs encoding transcription factors. Scientific Reports, 7, 42367, (2017)
|
[20] | Musah, S., Mammoto, A., Ferrante, C. T., Jeanty, S.S., Hirano-Kobayashi, M., Mammoto, T., Roberts, K., Chung, S., Novak, R., Ingram, M., Fatanat-Didar, T., Koshy, S., Weaver, C. J., Church, M. G., Ingber, F. D. . Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nature Biomedical Engineering, 1 (0069), (2017)
|
[21] | Camp, J. G., Sekine, K., Gerber, T., Loeffler-Wirth, H., Binder, H., Gac, M., Kanton, S., Kageyama, J., Damm, G., Seehofer, D., Belicova, L., Barsacchi, M., Barsacchi, R., Okuda, R., Yoshizawa, E., Kimura, M., Ayabe, H., Taniguchi, H., Takebe, T., & Belicova, L.. Multilineage communication regulates human liver bud development from pluripotency. Nature, 546, 533-538, (2017)
|
[22] | Polisetti, N., Sorokin, L., Okumura, N., Koizumi, N., Kinoshita, S., Kruse, F. E., and Schlotzer- Schrehardt, U. Laminin-511 and-521-based matrices for efficient ex vivo-expansion of human limbal epithelial progenitor cells. Scientific Reports, 7, 5152, (2017)
|
[23] | Hongo, A., Okumura, N., Nakahara, M., Kay, E. P., & Koizumi, N.. The Effect of a p38 Mitogen- Activated Protein Kinase Inhibitor on Cellular Senescence of Cultivated Human Corneal Endothelial CellsEffect of a p38 MAPK Inhibitor on Corneal Endothelial Cells. Investigative Ophthalmology & Visual Science, 58(9), 3325-3334, (2017)
|
[24] | Taniguchi, Y., Li, S., Takizawa, M., Oonishi, E., Toga, J., Yagi, E., & Sekiguchi, K. Probing the acidic residue within the integrin binding site of laminin-511 that interacts with the metal ion- dependent adhesion site of α6β1 integrin. Biochemical and Biophysical Research Communications, 487(3), 525-531, (2017)
|
[25] | Sekine, S. I., Kondo, T., Murakami, N., Imamura, K., Enami, T., Shibukawa, R., Tsukita, K., Funayama, M., Inden, M., Kurita, H., Hozumi, I., Inoue, H.. Induced pluripotent stem cells derived from a patient with familial idiopathic basal ganglia calcification (IBGC) caused by a variant in SLC20A2 gene. Stem Cell Research, (2017)
|
[26] | Tan, G. W., Kondo, T., Murakami, N., Imamura, K., Enami, T., Tsukita, K., Shibukawa, R., Funayama, M., Matsumoto, R., Ikeda, I., Takahashi, R., Inoue, H.. Induced pluripotent stem cells derived from an autosomal dominant lateral temporal epilepsy (ADLTE) patient carrying S473L mutation in leucine-rich glioma inactivated 1 (LGI1). Stem Cell Research, (2017)
|
[27] | Sato-Nishiuchi, R., Li, S., Ebisu, F., Sekiguchi, K.. Recombinant laminin fragments endowed with collagen-binding activity: A tool for conferring laminin-like cell-adhesive activity to collagen matrices. Matrix Biology, (2017)
|
[28] | Kikuchi, T., Morizane, A., Doi, D., Magotani, H., Onoe, H., Hayashi, T., Mizuma, H., Takara, S., Takahashi, R., Inoue, H., Morita, S., Yamamoto, M., Okita, K., Nakagawa, M., Parmar, M., Takahashi, J.. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease model. Nature, 548, 592-596, (2017)
|
[29] | Takizawa, M., Arimori, T., Taniguchi, Y., Kitago, Y., Yamashita, E., Takagi, J., Sekiguchi, K.. Mechanistic basis for the recognition of laminin-511 by α6β1 integrin. Science Advances, 3(9), e1701497, (2017)
|
[30] | Morizane, A., Kikuchi, T., Hayashi, T., Mizuma, H., Takara, S., Doi, H., Mawatari, A., Glasser, M.F., Shiina, T., Ishigaki, H., Itoh, Y., Okita, K., Yamasaki, E., Doi, D., Onoe, H., Ogasawara, K., Yamanaka, S., and Takahashi, J. . MHC matching improves engraftment of iPSC-derived neurons in non- human primates. Nature Communications, 8(1), 385, (2017)
|
[31] | Kikuchi, T., Morizane, A., Doi, D., Magotani, H., Onoe, H., Hayashi, T., Mizuma, H., Takara, S., Takahashi, R., Inoue, H., Morita, S., Yamamoto, M., Okita, K., Nakagawa, M., Parmar, M., Takahashi, J. . human ips cell-derived dopaminergic neurons function in a primate Parkinson's disease model. Nature, 548(7669), 592-596, (2017)
|
[32] | Kojima, Y., Sasaki, K., Yokobayashi, S., Sakai, Y., Nakamura, T., Yabuta, Y., Nakaki, F., Nagaoka, S., Woltjen, K., Hotta, A., Yamamoto, T., Saitou, M.. Evolutionarily Distinctive Transcriptional and Signaling Programs Drive Human Germ Cell Lineage Specification from Pluripotent Stem Cells. Cell Stem Cell, 21(4), 517-532.e5, (2017)
|
[33] | Taguchi, A., & Nishinakamura, R.. Higher-Order Kidney Organogenesis from Pluripotent Stem Cells. Cell Stem Cell, 21. (2017)
|
[34] | Takebe, T., Sekine, K., Kimura, M., Yoshizawa, E., Ayano, S., Koido, M., Funayama, S., Nakanishi, N., Hisai, T., Kobayashi, T., Kasai, T., Kitada, R., Mori, A., Ayabe, H., Ejiri, Y., Amimoto, N., Yamazaki, Y., Ogawa, S., Ishikawa, M., Kiyota, Y., Sato, Y., Nozawa, K., Okamoto, S., Ueno, Y., Kasai, T.. Massive and Reproducible Production of Liver Buds Entirely from Human Pluripotent Stem Cells. Cell Reports, 21(10), 2661-2670, (2017)
|
[35] | Uchimura, T., Otomo, J., Sato, M., Sakurai, H.. A human iPS cell myogenic differentiation system permitting high-throughput drug screening. Stem cell research, 25, 98-106, (2017)
|
[36] | Sougawa, N., Miyagawa, S., Fukushima, S., Saito, A., Yokoyama, J., Kitahara, M., Harada, A., Sato- Nishiuchi, R., Sekiguchi, K., Sawa, Y.. Novel Stem Cell Niches Laminin 511 Promotes Functional Angiogenesis Through Enhanced Stem Cell Homing by Modulating" Stem Cell Beds" in the Failed Heart.Circulation, 136(1), A15587, (2017)
|
[37] | Samata, B., Doi, D., Nishimura, K., Kikuchi, T., Watanabe, A., Sakamoto, Y., Kakuta, J., Ono, Y.,& Takahashi, J.. Purification of functional human ES and iPSC-derived midbrain dopaminergic progenitors using LRTM1. Nature Communications, 7(13097), 1-11, (2016)
|
[38] | Hayashi, R., Ishikawa, Y., Sasamoto, Y., Katori, R., Nomura, N., Ichikawa, T., Araki, S., Soma, T., Kawasaki, S., Sekiguchi, K., Tsujikawa, M., Nishida, K., & Quantock, A. J.. Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature, 531(7594), 376-380, (2016)
|
[39] | Matsuno, K., Mae, S. I., Okada, C., Nakamura, M., Watanabe, A., Toyoda, T., Uchida, E., Osafune, K.. Redefining definitive endoderm subtypes by robust induction of human induced pluripotent stem cells.Differentiation; research in biological diversity, (2016)
|
[40] | Nishimura, K., Doi, D., Samata, B., Murayama, S., Tahara, T., Onoe, H., & Takahashi, J.. Estradiol Facilitates Functional Integration of iPSC-Derived Dopaminergic Neurons into Striatal Neuronal Circuits via Activation of Integrin α5β1. Stem cell reports, 6(4), 511-524, (2016)
|
[41] | Takayama, K., Mitani, S., Nagamoto, Y., Sakurai, F., Tachibana, M., Taniguchi, Y., Sekiguchi,K., Mizuguchi, H.. Laminin 411 and 511 promote the cholangiocyte differentiation of human induced pluripotent stem cells. Biochemical and biophysical research communications, 474(1), 91-96, (2016)
|
[42] | Kawamura, T., Miyagawa, S., Fukushima, S., Maeda, A., Kashiyama, N., Kawamura, A., Miki, K., Okita, K., Yoshida, Y., Shiina, T., Ogasawara, K., Miyagawa, S., Toda, K., Okuyama, H., Sawa,Y.. Cardiomyocytes derived from MHC-homozygous induced pluripotent stem cells exhibit reduced allogeneic immunogenicity in MHC-matched non-human primates. Stem cell reports, 6(3), 312- 320, (2016).
|
[43] | Tanigawa, S., Taguchi, A., Sharma, N., Perantoni, A. O., & Nishinakamura, R.. Selective in vitro propagation of nephron progenitors derived from embryos and pluripotent stem cells. Cell reports, 15(4), 801-813, (2016)
|
[44] | Okumura, N., Kakutani, K., Numata, R., Nakahara, M., Schlotzer-Schrehardt, U., Kruse, F., Kinoshita. K., Koizumi, N.. Laminin-511 and-521 Enable Efficient In Vitro Expansion of Human Corneal Endothelial CellsLaminin-511 and-521 Enable Expansion of HCECs. Investigative ophthalmology & visual science, 56(5), 2933-2942, (2015)
|
[45] | Sasaki, K., Yokobayashi, S., Nakamura, T., Okamoto, I., Yabuta, Y., Kurimoto, K., Ohta, H., Moritoki, Y., Iwatani, C., Tsuchiya, H., Nakamura, S., Sekiguchi, K., Sakuma, T., Yamamoto, T., Mori, T., Woltjen, K., Nakagawa, M., Yamamoto, T., Takahashi, K., Yamanaka, S., Saitou, M.. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell stem cell, 17(2), 178-194, (2015)
|
[46] | Nakagawa, M., Taniguchi, Y., Senda, S., Takizawa, N., Ichisaka, T., Asano, K., Morizane, A., Doi, D., Takahashi, J., Nishizawa, M., Yoshida, Y., Toyoda, T., Osafune, K., Sekiguchi, K., & Yamanaka, S. . A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Scientific reports, 4(3594), 1-7, (2014)
|
[47] | Doi, D., Samata, B., Katsukawa, M., Kikuchi, T., Morizane, A., Ono, Y., Sekiguchi, K., Nakagawa, M., Parmar, M., Takahashi, J.. Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem cell reports, 2(3), 337-350, (2014)
|
[48] | Takashima, Y., Guo, G., Loos, R., Nichols, J., Ficz, G., Krueger, F., Oxley, D., Santos, F., Clarke, J., Mansfield, W., Reik, W., Bertone, P., Smith, A.. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell, 158(6), 1254-1269, (2014)
|
[49] | Fukuta, M., Nakai, Y., Kirino, K., Nakagawa, M., Sekiguchi, K., Nagata, S., Matsumoto, Y., Yamamoto, T., Umeda, K., Heike, T., Okumura, N., Koizumi, N., Sato, T., Nakahata, T., Saito, M., Otsuka, T., Kinoshita, S., Ueno, M., Ikeya, M., Toguchida, J. . Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media. PloS one, 9(12), e112291, (2014)
|
[50] | Burridge, P. W., Matsa, E., Shukla, P., Lin, Z. C., Churko, J. M., Ebert, A. D., Lan, F., Diecke, S., Huber, B., Mordwinkin, N. M., Plews, J. R., Abilez, O. J., Cui, B., Gold, J. D., & Wu, J. C. . Chemically defined generation of human cardiomyocytes. Nature methods, 11(8), 855-860, (2014)
|
[51] | Miyazaki, T., Futaki, S., Suemori, H., Taniguchi, Y., Yamada, M., Kawasaki, M., Hayashi, M., Kumagai, H., Nakatsuji, N., Sekiguchi, K., & Kawase, E. . Laminin E8 fragment support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nature communications, 3(1236), 1-10, (2012)
|
[52] | Taniguchi, Y., Ido, H., Sanzen, N., Hayashi, M., Sato-Nishiuchi, R., Futaki, S., & Sekiguchi, K. . The C-terminal region of laminin β chains modulates the integrin binding affinities of laminins. Journal of Biological Chemistry, 284(12), 7820-7831, (2009)
|
[53] | Ido, H., Nakamura, A., Kobayashi, R., Ito, S., Li, S., Futaki, S., & Sekiguchi, K. . The requirement of the glutamic acid residue at the third position from the carboxyl termini of the laminin γ chains in integrin binding by laminins. Journal of Biological Chemistry, 282(15), 11144-11154, (2007) |