<code id="r5wg9"></code>
<th id="r5wg9"></th>
    <th id="r5wg9"><address id="r5wg9"></address></th>

          <object id="r5wg9"></object>

          <th id="r5wg9"></th>
        1. <object id="r5wg9"></object>
        2. 生命科學
          化學
          分析
          儀器
          耗材
          細胞培養基質 層粘連蛋白511
          iMatrix-511

          191589873963.png細胞培養基質 層粘連蛋白511

          iMatrix-511



          271558930212.png


          271558930246.png



          ◆什么是層粘連蛋白511?


          1715161779488306.jpg

            層粘連蛋白是存在于動物基底膜的一種細胞外基質,已知其與細胞粘附和增殖息息相關。本產品是與層粘連蛋白 511-E8 片段有同一序列的重組蛋白,是可以促進各種細胞粘附和伸展的培養基質。

            大阪大學和京都大學共同研究開發,本產品已證明在操作難度非常大的人 iPS 細胞和人 ES 細胞培養中,也可以安全且高效地進行細胞培養。



          ● 細胞培養的準備非常簡單!

          ● 可用于多種類型的細胞培養!

          ● 無論分離細胞的狀態如何,可實現細胞的高生存率和細胞增殖的高效性!

          ● 重組蛋白(CHO-S細胞來源),所以混入雜質的危險性低!

          ● 溶液型試劑,無需溶解,稀釋后可直接使用


          2.jpg


            層粘連蛋白511 是由 α5 鏈、β1 鏈和 γ1 鏈組成的層粘連蛋白。層粘連蛋白 511-E8 是層粘連蛋白片段,但其具有與層粘連蛋白全長分子相同的 α6β1 整合蛋白連接功能。

            本產品是 Nippi 根據大阪大學和京都大學的專利技術生產販賣的。



          使用方法


            用 PBS(-)稀釋本產品,按照 0.1~0.5 μg/cm加入細胞培養器皿中。

            ※由于細胞種類和細胞株的不同、使用的培養基種類不同,添加的最適劑量會有差異,初次使用時,按照 0.5 μg/cm添加培養容器中,逐漸

            調整至最佳使用濃度。

                   

            室溫下孵育 3 小時,然后去掉溶液。

                   

            添加細胞和培養液,進行細胞培養。

          ● 培養 ES/iPS 細胞時,可進行無飼養層和單細胞繼代培養



          使用案例


          3.jpg


            使用本產品對表皮細胞培養 0.5 小時,對血管內皮細胞培養 1 小時。

            (a) 表皮細胞,培養 0.5 小時
                    左(無涂層):大部分細胞未貼壁。
                    右(iMatrix):多數細胞貼壁并成伸展狀態。

            (b) 血管內皮細胞,培養 1 小時
                    左(無涂層):有貼壁的細胞,但大部分多為圓形。
                    右(iMatrix):較少觀察到圓形細胞,幾乎所有的細胞表現出了很好的伸展性。

                    實驗人員: (株) Nippi BioMatrix 研究所 藤崎



          iMatrix-511 與 iMatrix-511 silk 的區別



          iMatrix-511

          iMatrix-511 silk

          生產系統

          轉基因 CHO-S 細胞

          轉基因蠶生產系統

          提純材料

          CHO-S 細胞培養上清

          蠶蛹蛋白

          產品等級

          實驗研究用* *有臨床用級別

          實驗研究用

          導入基因

          人層粘連蛋白 511-E8 片段

          純度

          95% 以上

          濃度

          0.5 mg/mL

          解離常數

          10 nM 以下

          使用期限

          生產后 2 年內

          iPS 細胞培養能力

          添加 0.5 μg/cm到培養容器中,可用于 iPS 細胞的維持培養



          產品列表


          產品編號

          生產商編號

          產品名稱

          包裝

          385-07361

          892011

          iMatrix-511 solution

          (0.5 mg/mL)

          層粘連蛋白511-E8片段,

          溶液(0.5 mg/mL)

          175 μg×2(350 μL×2)

          381-07363

          892012

          175 μg×6(350 μL×6)

           

          ※ 本頁面產品僅供研究用,研究以外不可使用。


          點擊此處,選擇頁面中的”iMatrix? Calculator“計算實驗中 iMatrix-511 使用量

          點擊此處進一步獲取文獻應用實例

          點擊此處下載產品宣傳頁


          iMatrix-511,iMatrix-511 silk


          Q1. 產品是以什么樣的狀態銷售的?

          A1. 產品是以液態銷售的。一支試管里密封裝有 0.5 mg/mL 濃度的 175 μg 的細胞培養外基質(層粘連蛋白 511-E8 片段)。

          ※iMatrix-511 的凍干產品已于2015年3月停止生產。

           


          Q2. 產品的存儲條件和有效期是什么?

          A2. 產品的儲存條件為,冷藏保存在 2-15°C。(推薦 4°C)

          A2. 產品的有效期,請參考下表。


          產品

          保質期

          iMatrix-511

          自生產后兩年內

          iMatrix-511silk

          自生產后兩年內

          iMatrix-511MG

          自生產后兩年內


          ※具體的有效期詳見產品外包裝。

           


          Q3. 可以冷凍保存嗎?

          A3. 不可以冷凍保存。

           


          Q4. 產品的純度是多少?

          A4. 純度為 95% 以上。

           


          Q5. 培養 hES/hiPS 細胞時使用什么培養基最好?

          A5. 宮崎等的論文(Nature communications, 3(1236), 1-10, 2012)、(Scientific Reports, 7, 41165, 2017)中,使用了以下的培養基。

               ?mTeSR1,TeSR2,TeSR-E8 (STEMCELL Technologies)
               ?Stem Pro hESC SFM (Thermo Fisher Scientific)
               ?StemFit AK03 (Ajinomoto)

               中川等的論文(Scientific Reports, 4(3594), 1-7, 2014)中使用了以下的培養基。

               ?StemFit (Ajinomoto)

               文獻中使用的培養基都出現了良好的結果。

           


          Q6. 培養 iPS 細胞時,最佳的涂層濃度是多少?

          A6. 最佳的涂層濃度根據細胞株的不同也會有所不同。

          A6. 最初請從濃度 0.5 μg/cm開始嘗試,請根據您使用的細胞株在濃度 0.1~1.5 μg/ cm之間考慮。

          A6. 另外,還有文獻報道了新的不以涂層包被的添加法。

          A6. Miyazaki et al. Scientific Reports, 7, 41165, (2017)


           

          Q7. 請教我使用 iMatrix-511 時,培養 iPS 細胞的步驟。

          A7. 使用 iMatrix-511 時,ES/iPS 細胞的擴增培養步驟,傳代操作,請參考以下的鏈接。

          (擴增培養步驟 )

          (傳代操作的視頻)

           


          Q8. 培養 iPS 細胞時,需要 Rock Inhibitor(Y-27632)嗎?

          A8. 在中川等的論文(Scientific Reports, 4(3594), 2014)中,介紹了只有在傳代時添加 Rock Inhibitor,更換培養基的時候不需使用。

           


          Q9. 培養 iPS 細胞時可以單細胞傳代嗎?

          A9. 可以。

          ※使用 iMatrix-511 時,ES/iPS 細胞的擴增培養步驟,傳代操作,請參考以下的鏈接。

          (擴增培養步驟 )

          (傳代操作的視頻)

          也可以參考中川等的論文(Scientific Reports, 4(3594), 2014)。

           


          Q10. 傳代時使用什么細胞分離液?

          A10. 可使用胰蛋白酶。

          ※使用 iMatrix-511 時,ES/iPS 細胞的擴增培養步驟,傳代操作,請參考以下的鏈接。

          (擴增培養步驟)

          (傳代操作的視頻)

          也可以參考中川等的論文(Scientific Reports, 4(3594), 2014)。

           


          Q11. 可以使用小鼠的 iPS 細胞嗎?

          A11. 由于沒有小鼠 iPS 細胞的培養數據,所以無法回答。

           


          Q12. 這個產品與基質膠有什么不同?

          A12. 基質膠含有小鼠EHS肉瘤來源的層粘連蛋白-111。另外還含有層粘連蛋白以外的分子。

          A12. iMatrix-511 是將在 CHO-S 細胞中表達的層粘連蛋白 511-E8 片段高度純化后的重組蛋白。

          A12.iMatrix-511silk 是從蠶結的繭中高純度純化層粘連蛋白 511-E8 片段的重組蛋白。

          A12.已知人ES細胞和 iPS 細胞是通過細胞膜受體(特別是 α6β1整聯蛋白)粘附于層粘連蛋白-511。

          A12.已知人ES細胞和 iPS 細胞對層粘連蛋白-511 具有高粘附活性。這使得用 iMatrix-511/iMatrix-511silk 可以使 iPS 細胞在單細胞狀態下傳代。

          A12.在宮崎等的論文中(Nature communications, 3(1236), 1-10, 201),5 次傳代后(30 天后)的細胞數擴增效率約為基質膠的 200 倍。


          參考文獻



          分類

          文獻信息

          主題

          人多能干細胞(hPSC)的確立

          Miyazaki et al. Nat. Commun.3:1236, (2012)

          證實用作hPSC的培養基質的有效性

          Nakagawa et al. Sci. Rep4:3594, (2014)

          確立醫療等級的hPSC

          Takashima et al. Cell.158(6):1254-69, (2014)

          促進向hPSC的基質狀態的轉移

          Miyazaki et al. Sci. Rep.7:41165, (2017)

          采用無需涂層操作的添加法培養hPSC

          Sekine et al. Stem Cell Res.24:40-43, (2017)

          確立疾病特異性的hPSC

          Tan et al. Stem Cell Res24:12-15, (2017)

          Ishida et al. Sci. Rep8(1), 310, (2018)

          利用hPSC的基因編輯建立遺傳性疾病模型

          Kim et al. Nature Communications9(1), 939, (2018)

          Sakai-Takemura et al. Sci. Rep8, 6555, (2018)

          懸浮培養由hPSC分化的肌肉前體細胞

          由hPSC分化衍生的細胞

          Doi et al. Stem Cell Reports2(3):337-50, (2014)

          多巴胺產生神經元

          Ishikawa et al. Hum. Mol. Genet.25(23):

          5188-5197, (2016)

          Nishimura et al. Stem Cell Reports.6(4):

          511-524, (2016)

          Samata et al. Nat. Commun7:13097, (2016)

          Kikuchi et al. Nature548(7669):592-596,   (2017)

          Morizane et al. Nat. Commun.8(1):385, (2017)

          Kikuchi et al. J. Neurosci. Res.95(9):1829-37, (2017)

          Goparaju et al. Sci. Rep7:42367, (2017)

          運動神經元

          Burridge et al. Nat. Methods.11(8):855-60,    (2014)

          心肌細胞

          Sougawa et al. Sci. Rep,8(1), 3726, (2018)

          Yamauchi et al. BBRC495(1), 1278-1284,      (2018)

          心室肌細胞

          Akiyama et al. Sci. Rep8(1), 1189, (2018)

          骨骼肌細胞

          Saito et al. Stem Cell Res Ther9(1), 12, (2018)

          成骨細胞

          Uchimura et al. Stem cell research25, 98-106, (2017)

          成肌細胞

          Hayashi et al. Nature.531(7594):376-80, (2016)

          視覺細胞

          Hayashi et al. Nat. Protoc.12(4):683-696, (2017)

          角膜上皮細胞

          Takayama et al. BBRC474(1):91-96, (2016)

          膽管上皮細胞

          Takayama et al. Hepatol Commun,1(10), 1058-1069, (2017)

          肝實質細胞

          Takayama et al. Biomaterials, (2018)

          Takebe et al. Cell Reports21(10), 2661-2670, (2017)

          肝細胞

          Tan et al. Stem Cell Reports11:1-11, (2018)

          Camp et al. Nature. 546(7659):533-38, (2017)

          定形內胚層細胞

          Zhang et al. Stem Cell Reports10(2), 1–14, (2018)

          后內胚層前體細胞

          Tanigawa et al. Cell reports15(4), 801-813, (2016)

          腎單位前體細胞(胎腎細胞)

          Musah et al. Nat.Biomed.Eng.1:0069, (2017)

          腎小球上皮細胞

          Musah et al. Nature protocols,13(7):1662,    (2018)

          Mae et al. BBRC495(1), 954-961, (2018)

          輸尿管芽組織

          Oshima et al. BBRC497(2), 719-725, (2018)

          血細胞?血管內皮常見前體細胞

          Taguchi et al. Cell Stem Cell21, (2017) 

          *培養hPSC用于分化腎單位前體細胞(胎腎細胞)

          Kawamura et al. Stem Cell Reports.6(3):312-20,(2016)

          *培養hPSC用于分化心肌細胞

          Sasaki et al. Cell Stem Cell.17(2):178-94, (2015)

          *培養hPSC用于分化生殖細胞

          Kojima et al. Cell Stem Cell.21(4):517-532,    (2017)

          Furuta et al. PLoS One9(12):e112291, (2014)

          *培養hPSC用于分化間充質細胞

          人原代細胞的培養

          Okumura et al. Invest. Ophth. Vis. Sci.56(5):2933-42, (2015)

          人角膜內皮細胞

          Hongo et al. Invest. Ophth. Vis. Sci.58(9):3325-34, (2017)

          Polisetti et al. Sci. Rep.7(1):5152, (2017)

          人角膜邊緣上皮前體細胞

          Ishii et al. Stem Cell Reports10, 1-15, (2018)

          衛星細胞

          層粘連蛋白-整合素相互作用的分子機制

          Ido et al. J. Biol. Chem282(15): 11144-54,    (2007)


          Ido et al. J. Biol. Chem.283(42): 28149-57,    (2008)

          Taniguchi et al. J. Biol. Chem284(12): 7820-31, (2009)

          Taniguchi et al. BBRC.487(3): 525-531, (2017)

          Takizawa et al. Sci Adv.3(9) :e1701497, (2017)



          英文論文


          [1]

          Ayabe, H., Anada, T., Kamoya, T., Sato, T., Kimura, M., Yoshizawa, E., Kikuchi, Shunyuu., Ueno, 

          Yasuharu., Sekine, keisuke., J. Gray Camp., Treutlein, B., Ferguson, Autumn., Suzuki, Osamu., 

          Takede, Takanori.. Optimal Hypoxia Regulates Human iPSC-Derived Liver Bud Differentiation 

          through Intercellular TGFB Signaling. Stem Cell Reports11, 1-11, (2018)

           

          [2]

          Musah, S., Dimitrakakis, N., Camacho, D. M., Church, G. M., Ingber, D. E.. Directed differentiation 

          of human induced pluripotent stem cells into mature kidney podocytes and establishment of a 

          lomerulus Chip. Nature protocols13(7), 1662, (2018)

           

          [3]

          Ishii, K., Sakurai, H., Suzuki, N., Mabuchi, Y., Sekiya, I., Sekiguchi, K., Akazawa, C.. Recapitulation of Extracellular LAMININ Environment Maintains Stemness of Satellite Cells In Vitro. Stem Cell 

          Reports10, 1-15, (2018)

           

          [4]

          Ishida, K., Xu, H., Sasakawa, N., Lung, M. S. Y., Kudryashev, J. A., Gee, P., & Hotta, A.. Site-specific 

          randomization of the endogenous genome by a regulatable CRISPR-Cas9 piggyBac system in 

          human cells. Scientific Reports8(1), 310, (2018)

           

          [5]

          Takayama, K., Hagihara, Y., Toba, Y., Sekiguchi, K., Sakurai, F., Mizuguchi, H.. Enrichment of high-

          functioning human iPS cell-derived hepatocyte-like cells for pharmaceutical research. 

          Biomaterials, (2018)

           

          [6]

          Akiyama, T., Sato, S., Chikazawa-Nohtomi, N., Soma, A., Kimura, H., Wakabayashi, S., Ko, S.B., Ko, M. S.. Efficient differentiation of human pluripotent stem cells into skeletal muscle cells by 

          combining RNA-based MYOD1-expression and POU5F1-silencing. Scientific Reports8(1), 1189, (2018)

           

          [7]

          Saito, A., Ooki, A., Nakamura, T., Onodera, S., Hayashi, K., Hasegawa, D., Okudaira,T., Watanabe, K., Kato, H., Onda, T., Watanabe, A., Kosaki, K., Nishimura, K., Ohtaka, Manami., Nakanishi, M., 

          Sakamoto, T., Yamaguchi, A., Sueishi, K., Azuma, T.. Targeted reversion of induced pluripotent 

          stem cells from patients with human cleidocranial dysplasia improves bone regeneration in a rat 

          calvarial bone defect model. Stem Cell Research & Therapy9(1), 12, (2018)

           

          [8]

          Yamauchi, K., Li, J., Morikawa, K., Liu, L., Shirayoshi, Y., Nakatsuji, N., Elliott, A. D., Hisatome, I., 

          Suemori, H..Isolation and characterization of ventricular-like cells derived from NKX2-5 eGFP/w 

          and MLC2v mCherry/w double knock-in human pluripotent stem cells. Biochemical and 

          Biophysical Research Communications495(1), 1278-1284, (2018)

           

          [9]

          Mae, S., Ryosaka, M., Toyoda, T., Matsuse, K., Oshima, Y., Tsujimoto, H., Okumura, S., Shibasaki, A., Osafune, K.. Generation of branching ureteric bud tissues from human pluripotent stem cells. 

          Biochemical and biophysical research communications495(1), 954-961, (2018)

           

          [10]

          Kagihiro, M., Fukumori, K., Aoki, T., Ungkulpasvich, U., Mizutani, M., Viravaidya-Pasuwat, K.,& 

          Kino-oka, M.. Kinetic analysis of cell decay during the filling process: Application to lot size 

          determination in manufacturing systems for human induced pluripotent and mesenchymal stem cells. Biochemical Engineering Journal131, 31-38, (2018)

           

          [11]

          Zhang, R. R., Koido, M., Tadokoro, T., Ouchi, R., Matsuno, T., Ueno, Y., Sekine, K., Takebe, T., 

          Taniguchi, H.. Human iPSC-Derived Posterior Gut Progenitors Are Expandable and Capable of 

          Forming Gut and Liver Organoids. Stem Cell Reports10(2), 1?14, (2018)

           

          [12]

          Oshima, K., Saiki, N., Tanaka, M., Imamura, H., Niwa, A., Tanimura, A., Nagahashi, A., Hirayama, A., Okitac, K., Hotta, A., Kitayama, S., Osawa, M., Kaneko, S., Watanabe, A., Asaka, I., Fujibuchi, W., 

          Imai, K., Yabe, H., Kamachi, Y., Hara, J., Kojima, S., Tomita, M., Soga, T., Noma, T., Nonoyama, S., 

          Nakahata, T., Saito, MK.. Human AK2 links intracellular bioenergetic redistribution to the fate of 

          hematopoietic progenitors. Biochemical and Biophysical Research Communications497(2), 719-

          725, (2018)

           

          [13]

          Sougawa, N., Miyagawa, S., Fukushima, S., Kawamura, A., Yokoyama, J., Ito, E., Harada, A., 

          Okimoto, K., Mochisuki-Oda, N., Saito, A., Sawa, Y.. Immunologic targeting of CD30 eliminates 

          tumourigenic human pluripotent stem cells, allowing safer clinical application of hiPSC-based cell therapy. Scientific Reports8(1), 3726, (2018)

           

          [14]

          Yasuda, S. Y., Ikeda, T., Shahsavarani, H., Yoshida, N., Nayer, B., Hino, M., Vartak-Sharma, N.,

          Suemori, H., Hasegawa, K.. Chemically defined and growth-factor-free culture system for the 

          expansion and derivation of human pluripotent stem cells. Nature Biomedical Engineering2(3), 

          173, (2018)

           

          [15]

          Kim, S. I., Matsumoto, T., Kagawa, H., Nakamura, M., Hirohata, R., Ueno, A., Ohishi, M., Sakuma, T., Soga, T., Yamamoto, T., Woltjen, K.. Microhomology-assisted scarless genome editing in human 

          iPSCs. Nature Communications9(1), 939, (2018)

           

          [16]

          Hayashi, R., Ishikawa, Y., Katori, R., Sasamoto, Y., Taniwaki, Y., Takayanagi, Tsujikawa, M., 

          Sekiguchi, K., Quantock, A. J., Nishida, K. . Coordinated generation of multiple ocular-like cell 

          lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nature 

          Protocols12(4), 683-696, (2017)

           

          [17]

          Kikuchi, T., Morizane, A., Okita, K., Nakagawa, M., Yamakado, H., Inoue, H., Takahashi, R., 

          Takahashi, J. . Idiopathic Parkinson's disease patient‐derived induced pluripotent stem cells 

          function as midbrain dopaminergic neurons in rodent brains. Journal of Neuroscience Research

          95(9),1829-37, (2017)

           

          [18]

          Miyazaki, T., Isobe, T., Nakatsuji, N., & Suemori, H. . Efficient Adhesion Culture of Human 

          Pluripotent Stem Cells Using Laminin Fragments in an Uncoated Manner. Scientific Reports7

          (41165), 1-8, (2017)

           

          [19]

          Goparaju, S. K., Kohda, K., Ibata, K., Soma, A., Nakatake, Y., Akiyama, T., Wakabayashi, S., 

          Matsushita, M., Sakota, M., Kimura, H., Yuzaki, M., Shigeru B. H. Ko & Minoru S. H. Ko. . Rapid 

          differentiation of human pluripotent stem cells into functional neurons by mRNAs encoding 

          transcription factors. Scientific Reports7, 42367, (2017)

           

          [20]

          Musah, S., Mammoto, A., Ferrante, C. T., Jeanty, S.S., Hirano-Kobayashi, M., Mammoto, T., Roberts, K., Chung, S., Novak, R., Ingram, M., Fatanat-Didar, T., Koshy, S., Weaver, C. J., Church, M. G., 

          Ingber, F. D. . Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute 

          kidney glomerular-capillary-wall function on a chip. Nature Biomedical Engineering1 (0069), 

          (2017)

           

          [21]

          Camp, J. G., Sekine, K., Gerber, T., Loeffler-Wirth, H., Binder, H., Gac, M., Kanton, S., Kageyama, J., Damm, G., Seehofer, D., Belicova, L., Barsacchi, M., Barsacchi, R., Okuda, R., Yoshizawa, E., Kimura, M., Ayabe, H., Taniguchi, H., Takebe, T., & Belicova, L.. Multilineage communication regulates 

          human liver bud development from pluripotency. Nature546, 533-538, (2017)

           

          [22]

          Polisetti, N., Sorokin, L., Okumura, N., Koizumi, N., Kinoshita, S., Kruse, F. E., and Schlotzer-

          Schrehardt, U. Laminin-511 and-521-based matrices for efficient ex vivo-expansion of human 

          limbal epithelial progenitor cells. Scientific Reports7, 5152, (2017)

           

          [23]

          Hongo, A., Okumura, N., Nakahara, M., Kay, E. P., & Koizumi, N.. The Effect of a p38 Mitogen-

          Activated Protein Kinase Inhibitor on Cellular Senescence of Cultivated Human Corneal 

          Endothelial CellsEffect of a p38 MAPK Inhibitor on Corneal Endothelial Cells. Investigative Ophthalmology & Visual Science58(9), 3325-3334, (2017)

           

          [24]

          Taniguchi, Y., Li, S., Takizawa, M., Oonishi, E., Toga, J., Yagi, E., & Sekiguchi, K. Probing the acidic 

          residue within the integrin binding site of laminin-511 that interacts with the metal ion-

          dependent adhesion site of α6β1 integrin. Biochemical and Biophysical Research 

          Communications487(3), 525-531, (2017)

           

          [25]

          Sekine, S. I., Kondo, T., Murakami, N., Imamura, K., Enami, T., Shibukawa, R., Tsukita, K., Funayama, M., Inden, M., Kurita, H., Hozumi, I., Inoue, H.. Induced pluripotent stem cells derived from a 

          patient with familial idiopathic basal ganglia calcification (IBGC) caused by a variant in SLC20A2 

          gene. Stem Cell Research, (2017)

           

          [26]

          Tan, G. W., Kondo, T., Murakami, N., Imamura, K., Enami, T., Tsukita, K., Shibukawa, R., Funayama, M., Matsumoto, R., Ikeda, I., Takahashi, R., Inoue, H.. Induced pluripotent stem cells derived from an autosomal dominant lateral temporal epilepsy (ADLTE) patient carrying S473L mutation in 

          leucine-rich glioma inactivated 1 (LGI1). Stem Cell Research, (2017)

           

          [27]

          Sato-Nishiuchi, R., Li, S., Ebisu, F., Sekiguchi, K.. Recombinant laminin fragments endowed with 

          collagen-binding activity: A tool for conferring laminin-like cell-adhesive activity to collagen 

          matrices. Matrix Biology, (2017)

           

          [28]

          Kikuchi, T., Morizane, A., Doi, D., Magotani, H., Onoe, H., Hayashi, T., Mizuma, H., Takara, S., 

          Takahashi, R., Inoue, H., Morita, S., Yamamoto, M., Okita, K., Nakagawa, M., Parmar, M., Takahashi, J.. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease 

          model. Nature548, 592-596, (2017)

           

          [29]

          Takizawa, M., Arimori, T., Taniguchi, Y., Kitago, Y., Yamashita, E., Takagi, J., Sekiguchi, K.. 

          Mechanistic basis for the recognition of laminin-511 by α6β1 integrin. Science Advances3(9), 

          e1701497, (2017)

           

          [30]

          Morizane, A., Kikuchi, T., Hayashi, T., Mizuma, H., Takara, S., Doi, H., Mawatari, A., Glasser, M.F., 

          Shiina, T., Ishigaki, H., Itoh, Y., Okita, K., Yamasaki, E., Doi, D., Onoe, H., Ogasawara, K., Yamanaka, S., and Takahashi, J. . MHC matching improves engraftment of iPSC-derived neurons in non-

          human primates. Nature Communications8(1), 385, (2017)

           

          [31]

          Kikuchi, T., Morizane, A., Doi, D., Magotani, H., Onoe, H., Hayashi, T., Mizuma, H., Takara, S., 

          Takahashi, R., Inoue, H., Morita, S., Yamamoto, M., Okita, K., Nakagawa, M., Parmar, M., Takahashi, J. . human ips cell-derived dopaminergic neurons function in a primate Parkinson's disease 

          model. Nature548(7669), 592-596, (2017)

           

          [32]

          Kojima, Y., Sasaki, K., Yokobayashi, S., Sakai, Y., Nakamura, T., Yabuta, Y., Nakaki, F., Nagaoka, S., Woltjen, K., Hotta, A., Yamamoto, T., Saitou, M.. Evolutionarily Distinctive Transcriptional and 

          Signaling Programs Drive Human Germ Cell Lineage Specification from Pluripotent Stem 

          Cells. Cell Stem Cell21(4), 517-532.e5, (2017)

           

          [33]

          Taguchi, A., & Nishinakamura, R.. Higher-Order Kidney Organogenesis from Pluripotent Stem 

          Cells. Cell Stem Cell21. (2017)

           

          [34]

          Takebe, T., Sekine, K., Kimura, M., Yoshizawa, E., Ayano, S., Koido, M., Funayama, S., Nakanishi, N., Hisai, T., Kobayashi, T., Kasai, T., Kitada, R., Mori, A., Ayabe, H., Ejiri, Y., Amimoto, N., Yamazaki, Y., Ogawa, S., Ishikawa, M., Kiyota, Y., Sato, Y., Nozawa, K., Okamoto, S., Ueno, Y., Kasai, T.. Massive 

          and Reproducible Production of Liver Buds Entirely from Human Pluripotent Stem Cells. Cell 

          Reports21(10), 2661-2670, (2017)

           

          [35]

          Uchimura, T., Otomo, J., Sato, M., Sakurai, H.. A human iPS cell myogenic differentiation system 

          permitting high-throughput drug screening. Stem cell research25, 98-106, (2017)

           

          [36]

          Sougawa, N., Miyagawa, S., Fukushima, S., Saito, A., Yokoyama, J., Kitahara, M., Harada, A., Sato-

          Nishiuchi, R., Sekiguchi, K., Sawa, Y.. Novel Stem Cell Niches Laminin 511 Promotes Functional 

          Angiogenesis Through Enhanced Stem Cell Homing by Modulating" Stem Cell Beds" in the Failed Heart.Circulation136(1), A15587, (2017)

           

          [37]

          Samata, B., Doi, D., Nishimura, K., Kikuchi, T., Watanabe, A., Sakamoto, Y., Kakuta, J., Ono, Y.,& 

          Takahashi, J.. Purification of functional human ES and iPSC-derived midbrain dopaminergic 

          progenitors using LRTM1. Nature Communications7(13097), 1-11, (2016)

           

          [38]

          Hayashi, R., Ishikawa, Y., Sasamoto, Y., Katori, R., Nomura, N., Ichikawa, T., Araki, S., Soma, T., 

          Kawasaki, S., Sekiguchi, K., Tsujikawa, M., Nishida, K., & Quantock, A. J.. Co-ordinated ocular 

          development from human iPS cells and recovery of corneal function. Nature531(7594), 376-380, (2016)

           

          [39]

          Matsuno, K., Mae, S. I., Okada, C., Nakamura, M., Watanabe, A., Toyoda, T., Uchida, E., Osafune, K.. Redefining definitive endoderm subtypes by robust induction of human induced pluripotent 

          stem cells.Differentiation; research in biological diversity, (2016)

           

          [40]

          Nishimura, K., Doi, D., Samata, B., Murayama, S., Tahara, T., Onoe, H., & Takahashi, J.. Estradiol 

          Facilitates Functional Integration of iPSC-Derived Dopaminergic Neurons into Striatal Neuronal 

          Circuits via Activation of Integrin α5β1. Stem cell reports6(4), 511-524, (2016)

           

          [41]

          Takayama, K., Mitani, S., Nagamoto, Y., Sakurai, F., Tachibana, M., Taniguchi, Y., Sekiguchi,K., 

          Mizuguchi, H.. Laminin 411 and 511 promote the cholangiocyte differentiation of human induced pluripotent stem cells. Biochemical and biophysical research communications474(1), 91-96, (2016)

           

          [42]

          Kawamura, T., Miyagawa, S., Fukushima, S., Maeda, A., Kashiyama, N., Kawamura, A., Miki, K., 

          Okita, K., Yoshida, Y., Shiina, T., Ogasawara, K., Miyagawa, S., Toda, K., Okuyama, H., Sawa,Y.. 

          Cardiomyocytes derived from MHC-homozygous induced pluripotent stem cells exhibit reduced allogeneic immunogenicity in MHC-matched non-human primates. Stem cell reports, 6(3), 312-

          320, (2016).

           

          [43]

          Tanigawa, S., Taguchi, A., Sharma, N., Perantoni, A. O., & Nishinakamura, R.. Selective in vitro 

          propagation of nephron progenitors derived from embryos and pluripotent stem cells. Cell 

          reports15(4), 801-813, (2016)

           

          [44]

          Okumura, N., Kakutani, K., Numata, R., Nakahara, M., Schlotzer-Schrehardt, U., Kruse, F., Kinoshita. K., Koizumi, N.. Laminin-511 and-521 Enable Efficient In Vitro Expansion of Human Corneal 

          Endothelial CellsLaminin-511 and-521 Enable Expansion of HCECs. Investigative ophthalmology & visual science56(5), 2933-2942, (2015)

           

          [45]

          Sasaki, K., Yokobayashi, S., Nakamura, T., Okamoto, I., Yabuta, Y., Kurimoto, K., Ohta, H., Moritoki, Y., Iwatani, C., Tsuchiya, H., Nakamura, S., Sekiguchi, K., Sakuma, T., Yamamoto, T., Mori, T., 

          Woltjen, K., Nakagawa, M., Yamamoto, T., Takahashi, K., Yamanaka, S., Saitou, M.. Robust in vitro 

          induction of human germ cell fate from pluripotent stem cells. Cell stem cell17(2), 178-194, 

          (2015)

           

          [46]

          Nakagawa, M., Taniguchi, Y., Senda, S., Takizawa, N., Ichisaka, T., Asano, K., Morizane, A., Doi, D., 

          Takahashi, J., Nishizawa, M., Yoshida, Y., Toyoda, T., Osafune, K., Sekiguchi, K., & Yamanaka, S. . A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem 

          cells. Scientific reports4(3594), 1-7, (2014)

           

          [47]

          Doi, D., Samata, B., Katsukawa, M., Kikuchi, T., Morizane, A., Ono, Y., Sekiguchi, K., Nakagawa, M., Parmar, M., Takahashi, J.. Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem cell reports2(3), 337-350, (2014)

           

          [48]

          Takashima, Y., Guo, G., Loos, R., Nichols, J., Ficz, G., Krueger, F., Oxley, D., Santos, F., Clarke, J., 

          Mansfield, W., Reik, W., Bertone, P., Smith, A.. Resetting transcription factor control circuitry 

          toward ground-state pluripotency in human. Cell158(6), 1254-1269, (2014)

           

          [49]

          Fukuta, M., Nakai, Y., Kirino, K., Nakagawa, M., Sekiguchi, K., Nagata, S., Matsumoto, Y., 

          Yamamoto, T., Umeda, K., Heike, T., Okumura, N., Koizumi, N., Sato, T., Nakahata, T., Saito, M., 

          Otsuka, T., Kinoshita, S., Ueno, M., Ikeya, M., Toguchida, J. . Derivation of mesenchymal stromal 

          cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media. PloS one9(12), e112291, (2014)

           

          [50]

          Burridge, P. W., Matsa, E., Shukla, P., Lin, Z. C., Churko, J. M., Ebert, A. D., Lan, F., Diecke, S., Huber, B., Mordwinkin, N. M., Plews, J. R., Abilez, O. J., Cui, B., Gold, J. D., & Wu, J. C. . Chemically defined generation of human cardiomyocytes. Nature methods11(8), 855-860, (2014)

           

          [51]

          Miyazaki, T., Futaki, S., Suemori, H., Taniguchi, Y., Yamada, M., Kawasaki, M., Hayashi, M., Kumagai, H., Nakatsuji, N., Sekiguchi, K., & Kawase, E. . Laminin E8 fragment support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nature communications3(1236), 1-10, 

          (2012)

           

          [52]

          Taniguchi, Y., Ido, H., Sanzen, N., Hayashi, M., Sato-Nishiuchi, R., Futaki, S., & Sekiguchi, K. . The C-terminal region of laminin β chains modulates the integrin binding affinities of laminins. Journal 

          of Biological Chemistry284(12), 7820-7831, (2009)

           

          [53]

          Ido, H., Nakamura, A., Kobayashi, R., Ito, S., Li, S., Futaki, S., & Sekiguchi, K. . The requirement of 

          the glutamic acid residue at the third position from the carboxyl termini of the laminin γ chains in integrin binding by laminins. Journal of Biological Chemistry282(15), 11144-11154, (2007)




          產品編號 產品名稱 產品規格 產品等級
          關注微信公眾號及時獲取最新資訊
          生物微信號
          化學分析微信號


          天天综合色天天综合色hd_男女性高爱潮免费播放_chinese粗暴潮叫videos_国产视频www